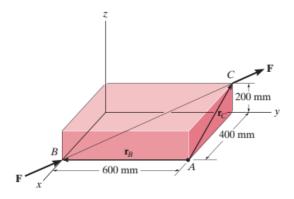
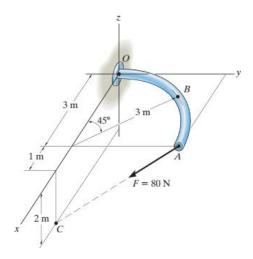
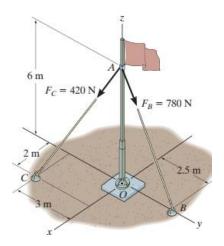
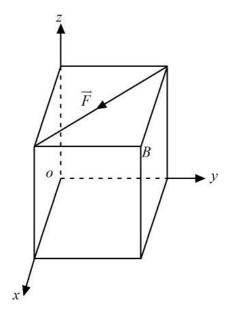

Static Assignment 2


1. Determine the moment of force F about point O. Express the result as a Cartesian vector.

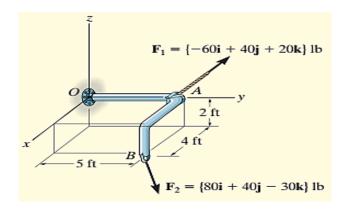

2. Two boys push on the gate as shown. If the boy at B exerts a force of $F_B = 30 \, lb$, determine the magnitude of the force F_A the boy at A must exert in order to prevent the gate from turning. Neglect the thickness of the gate.


3. A force F having a magnitude of F = 100 N acts along the diagonal of the parallelepiped. Determine the moment of F about point A.

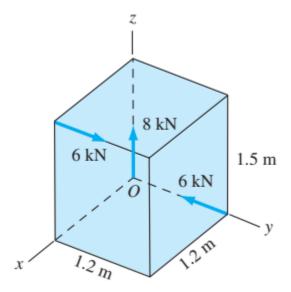
4. The curved lies in plane rod the x-yand has radius of 3 m. If a force of F = 80 Nshown, acts at its end determine the moment of this force about point B.



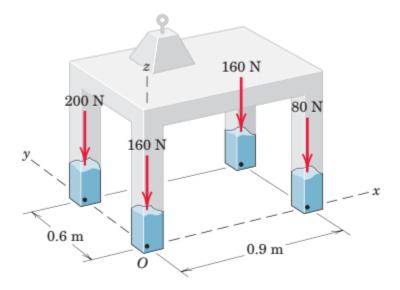
5. Determine produced the resultant force moment by and F_C about point O. result Express the Cartesian as a vector.


6. A force is acted on a cube as shown in fig., length of its side is a, Find the moment of the force about O, and about y-axis, and abut a diameter OB.

(Ans:
$$\overrightarrow{M_o} = \frac{Fa}{\sqrt{2}} (1, 1, -1), M_y = \frac{Fa}{\sqrt{2}}, M_{OB} = \frac{Fa}{\sqrt{6}}$$
)



7. Three forces act on the rod shown in fig. Determine the resultant moment they create about the flange at O, where: $\overrightarrow{F_1} = \left(-60,40,20\right)$; $\overrightarrow{F_2}\left(0,50,0\right)$ at point A; $\overrightarrow{F_3} = \left(80,40,-30\right)$ at B


(Ans:
$$\overrightarrow{M_o} = (30\hat{i} - 40j + 60k)$$
)

8. (a) Replace the force system shown by an equivalent force-couple system with the force acting at point *O*. (b) Determine the equivalent wrench, and find the coordinates of the point where the axis of the wrench crosses the *xy*-plane.

9. A table exerts the four forces shown on the floor surface. Reduce the force system to a force–couple system at point O. Show that R is perpendicular to Mo. Then replace this system by a single force and find its position.

Rules

1.
$$\mathbf{M} = \vec{r} \times \vec{F} = \begin{vmatrix} i & j & k \\ \mathbf{r}_x & \mathbf{r}_y & \mathbf{r}_z \\ \mathbf{F}_x & \mathbf{F}_y & \mathbf{F}_z \end{vmatrix}$$
 vector formula. \vec{F} given force in given form, and r

vector from moment point to any point on the line of action of the force.

- 2. M = Fd, scalar formula d is the moment arm or perpendicular distance from the moment point O to the line of action of the force.
- 3. $M = M_x i + M_y j + M_z k$, where M_x is the moment of forces about x axis, M_y moment of given forces about y axis.