

CH.1 - DYNAMIC

Rectilinear Motion

ENG\MOHAMED HAMDY

Q 9 / 01025135333

KING OF THE VECTORS

DYNAMIC **MECHANICS** Ch(1)ReCtilinear Motion 1) Motion with uniform acceleration 2) Motion with variable acceleration مركة بعادل, متغيره مينام ميكة بعال ثاب اومنتظر a=Gnstart or uniform a= f(Variable) 1) Motion with uniform acceleration * اذا كار الم سيترك من خطر متقيم بعجل ثاب اومستظم متم تطريق قوانس نيوت الوكه * V= Vo ± at $\frac{1}{2}$ $v^2 = v_0^2 \pm 2a (S - S_0)$ (3) $(5-5.)=V.t+\frac{1}{2}at^2$ kwhere: V:- Final VeloCity , well to lime Vo: initial velocity __ilm/___ 11 do: Total distance _______ 5:- Final displacement ilad plix a:- linear acceleration psilolas So: initial dis PlaComent - in y plix 9: 9vavity = 9,81 m/s2 il does - Linear a Colevation _ acceleration(a) ___ _ gravity(g)_ acceleration (+9) deceleration (-9) downward (+9,81) UPward (-9,81) **ENG / MOHAMED HAMDY 01025135333**

الممسوحة ضوئيا بـ CamScanner

DYNAMIC

合

2) Motion with variable acceleration

* إذا كار الجسم يتحرب في خطر منقيم بعادل منفيره فيتم تطبيقر لعانور لمناجب حب تغير نفع العالم

a = f(t)	a=f(5)	a=f(v)	V= P(S)
			ar .
S	Sads = Sydy	a = dV	لومعطي برمسد
ارناط ا ا ا ا	(اثبات)	ØĔ	من لسؤال
1 V Q	$Q = \frac{dV}{dt} * \frac{ds}{ds}$		$V = \frac{dS}{dt}$
V= dS = 5°	dt ds		لو معطم ازا م
$V = \frac{dS}{dt} = S^{\circ}$ $Q = \frac{dV}{dt} = V^{\circ} = S^{\circ}$	a = dv x ds		خ الـقال
(v-v.) = Sadt	CI = dV K V		Sads = SV dV
(5=5.)= SV ot	ads = VdV		
, ,		,	

1 x - 400 0 0 10 x

- ١٠ الوقال الدالجيم بدأ حركة مد لكور مد (from Yest) مد مرا حركة مد لكور مد (from Yest)
- 5=0 5t = a (from origin) Lot les in files
- ٧=+55=+ مال المرك من التجاه اليمييد ما المراه المحيد التمريد من التجاه اليمييد
- V= a (Change iT's direction) _ or of ist in end of the last of the
 - () لو قال الد الحسم و حول لا قريس ازام مد (Max disfla Cement) مده
- € لولم يعطى اى معلوم عداد زام الإستائي، ولسرع الاستدائي، اعترهم بطيعي مده و ما على على الم
- $V = \frac{S}{t} (V = ConST) + (Q = 0) + TO (CONST) (Q = 0) + (Q =$

ENG / MOHAMED HAMDY

2

DYNAMIC

Ex:1: Traveling with an initial speed of (70 Km/h) a Car a CCelerated at (6000 Km/h²) a long a Straight road. How long will it Take To reach a speed of (120 Km/h)? Also Through what displacement does the Car Travel during this Time?

0a1a * 501 *

 $V_0 = 70 \text{ KM/h}$

 $Q = 6000 \ \text{ICM/h}^2$ $V = 120 \ \text{ICM/h}$

-- 9 = GASTONT = 6000)CM/h2

:. V = V₀ + 01 t 120 = 70 + (6000)t

 $\frac{1}{120} = 8.3 \times 10^{-3} \text{ h} = 30 \text{ SeC} + 4$

 $S_{-} = \sqrt{t_{+}} + \frac{1}{2} a t^{2}$

 $S = (70)(\frac{1}{120}) + \frac{1}{2}(6000)(\frac{1}{120})^2$

: 5 = 0,79 KM *

ENG / MOHAMED HAMDY

DYNAMIC

Ex: 2: A Ball is Thrown from the Top of atwer (18m) y height, with a relocity of (12 m/s) vertically up ward Knowing That the acceleration of the ball is Constant and equal to (9,81 m/s2) down ward Determine (a) The velocity & elevation (4) of the ball above The ground at any a= 2.81 mls2 time (t). (b) The heighest devation and the corresponding of value of (+) (c) The time when The ball will hit The ground and The Gresharding VeloCity? * Sol * $Q = -9.81 \, m/s^2$ $Y_0 = 18 \, m$ $Y_0 = 12 \, m/s$ (a) V=V,+9t V = 12 - 9.81 t ... 0 4 (a) $y_{-}y_{-} = V_{0}t + \frac{1}{2}9t^{2}$ $y = 18 + 12t - 0.5(9.81)t^2$ 0 # (a) (b) max height = heighest elevation - at V=0 Foxey(1) t = 1,22 Sec *(b) ___ at t=1,22 For eq 0 y = 18 + 12(1,22) _ 0,5(9,81)(1,22)² · 9 = 25.33 m * (b) (c) The ball hit the ground __ at y=0 For eg (2) -0,5(9,61) t2 + 12t + 18 = 0 (- - - (- - - -) (- - - -) (منومز) t=3,49 Sec * (c) 5 t=-1,05 Sel at t=3,49 SeC ___ for eq (1)

ENG / MOHAMED HAMDY

= 12 - 9.81(3.49)

-1 - V = -22,2 m/s (C)

DYNAMIC

Ex:3: A sphere is fired down ward into a medium with an initial speed of (27 m/s) if it a deceleration a = (-6 t) m/s² where (t) is in seconds. determine The displacement Traveled when it STo Ped?

Data, Sol Reg.

 $V_{s} = 27 \text{ m/s}$ $Q = -(t) = Q \cdot (t) \text{ [variable]} \qquad S = 2$

When it stoped v=0 1+a

 $V - V_{\bullet} = \int_{0}^{t} Q dt \qquad 5 - 5_{\bullet} = \int_{0}^{t} V dt$

 $\sqrt{27} = \int_{-6}^{2} 6t \, dt$ $\sqrt{5-6} = \int_{-3}^{2} t^2 + 27 \, dt$

 $V - 27 = \frac{-6}{2} t^2 \int_0^t 5 = \frac{-3}{3} t^3 + 27t \int_0^t$

 $\sqrt{27} = 3t^2$ $5 = t^3 + 27t$

 $V = -3t^{2} + 27$ at t = 3 SeC

When it STOPed, at V = 0 $S = -(3)^3 + 27(3)$

-- S: 54 m #

: t = 3 SeC

ENG / MOHAMED HAMDY

DYNAMIC

Ex:4: The a Caleration of Particle traveling along a Straight line is $(9=0.255^{\frac{1}{2}})$ m/s². where (5) is in meters if (V=0)5(5=1 m) when (t=0). Determine the Particles yelocity at (S=2) m

DaTa! * SoL * Regr

 $Q = 0.25 S^{\frac{1}{4}} = q = f(S)$ [Yaridole]

5, 1 m S = 2 m

 $\int Q dS = \int V dV$ $\int 0.25 S^{\frac{1}{2}} dS = \int V dV$

 $\int_{0.25}^{1} o.25 S^{\frac{1}{2}} dS = \int_{0.25}^{1} V dV$

 $\frac{0.25}{1.5}$ $S^{\frac{3}{2}}$ $\frac{3}{2}$ $\frac{1}{2}$

 $0/16(5^{\frac{3}{2}}-1) = \frac{\sqrt{2}}{2}$ * 2

 $\sqrt{2} = 0.32 \left(5^{\frac{3}{2}} - 1 \right)$

 $V = \left[0.32 \left(5^{\frac{3}{2}} - 1\right)\right]^{\frac{1}{2}}$

at 5=2 m

 $V = \left[0,32\left(2^{\frac{3}{2}}-1\right)\right]^{\frac{1}{2}} = 0,76 \text{ m/s} \text{ }$

ENG / MOHAMED HAMDY

DYNAMIC

EX:5: A SMAN Particle is fired vertically obunuard into a fluid medium with an initial velocity of (60 m/s). due To The drag yesistance of the fluid the Particle experiences a deleteration (a = -0.4 v) m/s². Determine the Particle's yelocity and Position after (45) it is fixed.

Data: #50L# Re9:-

 $Q = -0.4 V^3 m/s^2 = q = f(v)$ [variable] S = 2f = 4 SeQ

 $Q = \frac{\partial V}{\partial t} \qquad \qquad \int \alpha \, ds = \int V \, dV$

 $-0.4V^3 = \frac{dV}{dt}$ $\int_{5.}^{3} -0.4V^3 dS = \int_{4.}^{4} V dV$

 $\int_{z_{-}}^{t} -0.4 \, dt = \int_{V_0}^{V_3} \frac{dV}{V^3}$ $\int_{V_0}^{t} -0.4 \, dS = \int_{V_0}^{V} \frac{1}{V^2} \, dV$

 $\int_{60}^{20} -0.4 dt = \int_{60}^{4} \sqrt{3} dV$ $\int_{60}^{20} -0.4 dS = \int_{60}^{4} \sqrt{3} dV$

 $-0.4 t | t = \frac{\sqrt{2}}{2} | \frac{\sqrt{2}}{60} | \frac{1}{4-2} - 0.4 S | \frac{1}{0} = \frac{\sqrt{-1}}{100} | \frac{1}{60} | \frac{1}{4-1}$

 $0.87 = \left(\frac{1}{V^2} - \frac{1}{60^2}\right) \qquad 0.45 = \left(\frac{1}{V} - \frac{1}{60}\right)$

at t = 4 see at V = 0.55

:. V = 0,55 m/s # : 5 = 4,5 m #

ENG / MOHAMED HAMDY

DYNAMIC

EX:6: The a Coelevation of Particle moves in a straight line is (a = 5-2v) m/s² where (v) is it's velocity if the Particle begins it's Motion from rest. Find the Time needed to the velocity be Gomes (1,25) m/s + 501 +

Oata:

 $Q = 5 - 2V \quad m/s^2 \quad a = l(v) \quad [Variable] \qquad t = ?$ $V_{\bullet} = 0 \qquad 5 \quad V = 1.25 \quad m/s$

 $A = \frac{\partial V}{\partial t}$

 $5-2V = \frac{\partial V}{\partial t}$

 $\int_{t}^{t} dt = \int_{v}^{v} dv$

 $\int dt = \frac{1}{-2} \int \frac{-2}{5-2V} dV$

 $t = \frac{1}{2} \ln (5-2v)$

 $t = -\frac{1}{2} \left[\ln(5-2v) - \ln(5) \right]$

 $t = \frac{1}{2} \ln \left(\frac{5-2V}{5} \right)$

at V=1,25 5 : t = 0,34 SeC #

ENG / MOHAMED HAMDY

8

DYNAMIC

Ex: 7: A Particle moves in a Straight line such that $(v = \frac{2}{1+5})$ Cm/s where (v) is the velocity, Find the time needed for Particle to arrive the Point (S = 4 Cm). Find also it's acceleration, if the Particle begins it's motion from rest.?

Octo, + Sol + Reg.

 $V = \frac{2}{1+5}$ V = f(S) f = ?

5 = 4 Cm

 $v = \frac{ds}{dt}$ $\frac{ds}{dt} = v dv = \frac{1}{2} \frac{ds}{dt}$

 $\frac{2}{(1+5)} = \frac{dS}{dt} \qquad \frac{1}{4S} \qquad \frac{1}{4S}$

 $\int_{t_{o}}^{t} 2 dt = \int_{s_{o}}^{s} (1+s) ds \qquad V = \frac{2}{(1+s)}$

 $\int_{0}^{\infty} 2 dt = \int_{0}^{\infty} (1+5) ds \qquad \frac{dv}{ds} = 2(1+5)^{-1} = -2(1+5)^{-2}$

 $2t \int_{a}^{t} = 5 + \frac{5^{2}}{2} \int_{a}^{5} \frac{dV}{ds} = \frac{-2}{(1+5)^{2}}$

 $2 \pm \frac{5^2}{2}$ $\frac{-2}{(1+5)^2}$ $\frac{-2}{(1+5)^2}$

 $t = \frac{S}{2} + \frac{S^2}{4}$ $Q = \frac{-4}{(1+5)^3}$

at S=4 : t=6 See # at S=4 : a = -4 cm/s2 #

ENG / MOHAMED HAMDY

9

© 01025135333

DYNAMIC

Ex:8: The acceleration of Particle & it moves along a straight line is given by (a=2t-9) m/s² whend(+) is in seconds if (S=1 m)s (V=10 m/s) at (t=0) Determine the Particle's velocity and Position when (t=9 sec) Also determine the Total distance of the Particle's Travel during the Time Period

Q = 2t - 9 t = 0.5 $S_0 = 1.00$ $S_0 =$

 $V - V_0 = \int G dt$ $V = \int G dt$

 $V = 10 = \int 2t - 9 dt$ $5 - 1 = \int t^2 - 9t + 10 dt$

 $V_{-10} = \frac{2}{2}t^{2} - 9t \int_{0}^{t} 5 - 1 = \frac{t^{3}}{3} - \frac{9}{2}t^{2} + 10t$

 $V = t^2 - 9t^2 + 10 \longrightarrow 0$ $5 = \frac{1}{3}t^3 - \frac{9}{2}t^2 + 10t + 1 \longrightarrow 0$

at t=9 at t=9

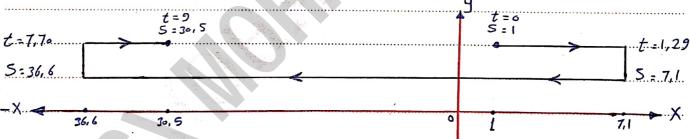
 $-S = \frac{1}{3}(9)^{3} = \frac{9}{2}(9)^{2} + \frac{1}{9}(9) + \frac{1}{9}$

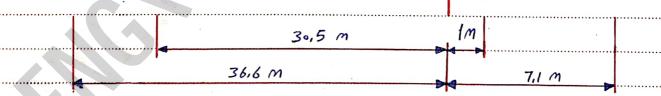
V = 10 m/s # : 5 = -30,5 m #

ENG / MOHAMED HAMDY

10

DYNAMIC




$$S = \frac{1}{3}t^{3} - \frac{9}{2}t^{2} + 10t + 1$$

$$S = \frac{1}{3}(1.29)^{3} - \frac{9}{2}(1.22)^{2} + 10(1.29) + 1$$

$$S = \frac{1}{3}t^3 + \frac{9}{2}t^2 + 10t + 1$$

$$5 = \frac{1}{3} (7.7a)^{3} = \frac{9}{2} (7.7a)^{2} + (a(7.7a) + 1)$$

ENG / MOHAMED HAMDY

DYNAMIC

SB

of the BLOCK (B) if the Grd (A) datum
is Pulled down with a Speed of (8 kt/s) 5

datum المحال على المحل المحل

1_ Total length of first wire:

 $L_1 = 2S_A + 2S_C \longrightarrow 0$

2. To Tot length of Second wire.

Lz = (SB _ Sc) + SB _____

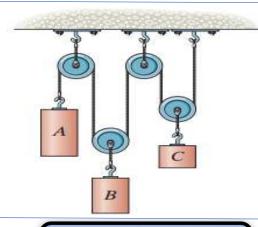
+ أعاضل المعادل 0 > 0 لا مجاد الرياد عات + + + - أعاضل المعادل المعادل المعادل المعاد المعاد المعاد المعاد الم

o = 2 VA + 2 Vc

-- VA = -8 lt/sl : Vc = 8 lt/s 1

0 = 2 VB - Vc

-- Vc = 8 ft/st __ : VB = 4 ft/st #


ENG / MOHAMED HAMDY

DYNAMIC

ASSIGNMENT 1

- ① A particle travels to the right along a straight line with a velocity $(v = \frac{5}{4+s})$ m/s where (s) is in meters. Determine its deceleration when (s = 2 m)?
- ② when a train is traveling along a straight track at (2 m/s). it begins to accelerate at (a = 60 v^{-4}) m/s² where (v) is in m/s. determine its velocity (v) and the position after (3 sec)?
- ③ A particle travels in a straight line with accelerated motion such that (a=-ks) where (s) is displacement from the starting point and (k) is a constant which is to be determined for (s=2 ft) the velocity is (4 ft/s) and for (s=3.5 ft) the velocity is (10 ft/s). what is (s) when (v=0)?
- A particle begins its motion in a straight line such that its position relative to a fixed point on that straight line is given by (S = t3 - 9t2 + 15t + 5). Find the position of the particle when the acceleration vanished, find also the total distance?
- S the pulley system supports three blocks as shown, if (A) is moving downward with a speed of (12 ft/s), while (C) is moving up with speed of (4 ft/s), what is the speed of the block (B)?

ENG / MOHAMED HAMDY